ECE627

Spring 2010

Midterm Examination

May 14, 2010, 3 - 3:50 pm

A 4-bit segmented DAC is shown below. The two MSBs control the switches which connect the two buffers to adjacent taps on the resistor string containing the resistors R_m . The LSBs select one of the tap voltages of the r_l string as the output voltage. Assume $V_R = 5$ V, and buffer offset voltages $V_{OA} = 0.2$ V, $V_{OB} = 0.5$ V. All resistors are equal to 1 kiloohm.

- a. Find the equation for the output V_{out} as a function of m (the value of the MSB word), and of l (the value of the LSB word).
- b. Plot the input-output characteristics of the DAC.
- c. What is the offset error? What is the gain error?
- d. Find the INL and DNL. You may neglect the gain error in these calculations.

a. Vout =
$$V_{m-1} + \frac{1}{4} (V_m - V_{m-1}) = \frac{5}{4} m + \frac{1.55}{4} L + 0.2 (V)$$

c: Offset error = 0.2 V, gain error = 5.1125-0.2 - d. $INL = \frac{1.55}{4} 3 - 5\frac{3}{16} = 0.225 V$ (5/16)5=-0.225 V $INL = \frac{5}{4} - \frac{1.55}{3} - \frac{5}{16} = -0.225 V = -0.72 LSB$